Differential expression of two O-methyltransferases in lignin biosynthesis in Zinnia elegans.

نویسندگان

  • Z H Ye
  • J E Varner
چکیده

Caffeic acid 3-O-methyltransferase (CAOMT) and caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) are involved in different methylation pathways in lignin biosynthesis. We previously showed that only the CCoAOMT was markedly induced during lignification in in vitro differentiating tracheary elements (TEs) of Zinnia elegans. To further examine the expression patterns of CAOMT in lignification, we isolated a cDNA clone for Zinnia CAOMT. RNA gel blot analysis showed that the expression of the CAOMT gene did not correlate well with lignification during in vitro TE differentiation from Zinnia-isolated mesophyll cells. Tissue-print hybridization showed that, in the young internodes, the CAOMT mRNA signal was much more evident in phloem fibers than in xylem, whereas the CCoAOMT mRNA signal was predominantly present in differentiating xylem regions. In the older internode, both the CAOMT and CCoAOMT mRNAs markedly accumulated in phloem fibers and differentiating xylem regions. Immunocytochemical localization showed that the CAOMT protein staining was much more evident in phloem fibers and xylem fibers than in xylem TEs. These results indicate that the expression of these two O-methyltransferases is differentially regulated during lignification in different cell types in Zinnia. We suggest that all the intermediates in the CAOMT-mediated methylation pathway might become substrates for the CCoAOMT-mediated methylation pathway after coenzyme A ligation when these two pathways occur in the same lignifying cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative methylation pathway in lignin biosynthesis in Zinnia.

S-Adenosyl-L-methionine:trans-caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT) is implicated in disease resistant response, but whether it is involved in lignin biosynthesis is not known. We isolated a cDNA clone for CCoAOMT in differentiating tracheary elements (TEs) induced from Zinnia-isolated mesophyll cells. RNA gel blot analysis showed that the expression of the CCoAOMT gene was marked...

متن کامل

Association of Caffeoyl Coenzyme Expression with Lignifying Tissues

Caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) was previously shown to be associated with lignification in both in vitro tracheary elements (TEs) and organs of zinnia (Zinnia elegans). However, it i s not known whether this i s a general pattern in dicot plants. To address this question, polyclonal antibodies against zinnia recombinant CCoAOMT fusion protein were raised and used for immuno...

متن کامل

Non-cell-autonomous postmortem lignification of tracheary elements in Zinnia elegans.

Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin ...

متن کامل

The role of xylem class III peroxidases in lignification.

Lignification is a cell wall fortifying process which occurs in xylem tissue in a scheduled manner during tissue differentiation. In this review, enzymes and the genes responsible for lignin biosynthesis have been studied with an emphasis on lignin polymerizing class III secretable plant peroxidases. Our aim is to understand the cell and molecular biology of the polymerization of lignin especia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 1995